Assaiut University Faculty of Science Chemistry Department

September 2022 Time: 3 hours Summer Semester

Physical Chemistry III Examination (C-332)

Answ	er the following questions:	(50 Maria)
Ques	tion One: Choose the correct answer for the following:	(35 marks)
1.	successfully explained the blackbody radiation by assuming that energy is of	juanozed.
	a) Planck b) De Broglie c) Einstein d.) Schrödinger	
2.	In the photoelectric effect, the kinetic energy of ejected electrons is the free	quency of the
	incident light.	
	a) dependent on b) inversely dependent on c) independent of	
3.	A wavefunction of a molecule has information about	
	a) kinetic energy b) potential energy c) dipole moment d) bond lengths	
4.	A particle in a one-dimensional box has quantum number(s).	
	a) 1 b) 2 c) 3 d) 4	
5.	The energy of a particle on a sphere depends on quantum number(s)	
	a) 1 b) m ₁ c) a and b	
6.	An electron in a hydrogen atom has quantum number(s).	
	a) 1 b) 2 c) 3 d) 4	
7.	An electron in a helium atom has quantum number(s).	1
	a) 1 b) 2 c) 3 d) 4	
8.	For a hydrogen atom, the degeneracy of the level with = 2 is	
	a) 2 b) 4 c) 5 d) 9	
9.	For a hydrogen atom, the degeneracy of the level with $l=1$ is	
	a) 3 b) 6 c) 7 d) 9	
10). The energy of an electrons in the 2P _x orbital of a hydrogen atom is eV.	15
	a) -13.6 b) 10.2 c) -3.4 d) -6.8	
11	1 is the number of waves per unit distance.	
	a) Wavelength b) Frequency c) Wavenumber	
12	2 has the highest energy.	
	a) X-rays b) UV c) Visible region d) IR	
13	3. A molecule has energy.	
	a) rotational b) vibrational c) electronic	

14. The separation between the energy levels is the highest.	
a) rotational b) vibrational c) electronic	rangali en an
15.1 Electrons in free radicals can change their spin and give spectra called.	
a) ESR b) NMR c) UV-vis d) IR	*
1 6 has a permanent dipole.	
a) 11c1 b) co c) coz a) 2011 til	
1.7. CO ₂ has spectra.	
a) rotational b) vibrational c) Raman	
18 show(s) rotational spectra.	
a) NO b) HCN c) N_2	
19 has a center of symmetry.	
a) HCl b) Acetylene c) Ethylene d) CH ₄	
20 is symmetric top.	
a) Benzene b) Ammonia c) Methyl chloride	
21 spectroscopy reveals the function groups in a molecule.	
a) UV-vis b) IR c) Microwave d) Raman	
22 energy doesn't have a zero-point energy.	
a) Rotational b) Vibrational c) a and b	
23. Water has bending mode(s) of vibration.	a jes, fan
a) 1 b) 2 c) 3	
24. The stretching of is IR active.	
4) 112 0) 112 0) 012	
25. The stretching of is Raman active.	antika t
a) HCl b) O_2 c) N_2	
26. CCl ₄ is active.	
a) IR b) microwave c) Raman	
27. CHCl ₃ is active.	
a) IR b) microwave c) Raman	
28. The symmetry of the atomic orbital(s) is/are g.	
a) s b) p c) d d) f	r gran
29. The possible electronic transition(s) in ethanol is/are	
a) $\sigma \rightarrow \sigma^*$ b) $\pi \rightarrow \pi^*$ c) $n \rightarrow \sigma^*$ d) $n \rightarrow \pi^*$	* * * * * * * * * * * * * * * * * * * *

- 30. The transition(s) is/are symmetry forbidden.
 - a) $\sigma \rightarrow \sigma^*$
- b) $\pi \stackrel{\sim}{\sim} \pi^*$ c) $\pi \rightarrow \sigma^*$
- d) $\sigma \rightarrow \pi^*$
- 31. An Auxochrome alters the of absorption.
 - a) wavelength
- b) intensity
- c) a and b
- 32.... shift is a shift toward a shorter wavelength.
 - a) Red
- b) Blue
- c) Hyperchromic
- d) Hypochromic
- 33. Assuming both molecules have the same bond length, the difference between the rotational spectral lines of ¹²CO are those of ¹³CO.
 - a) greater than
- b) smaller than
- c) equal to
- 34. In fluorescence, the emitted light will have wavelength compared to the absorbed light.
 - a) shorter b) longer c) the same
- 35..... is the slowest transition in this group.
 - a) Vibrational relaxation b) Fluorescence c) Phosphorescence d) Intersystem crossing

Question Two: Answer ONLY THREE of the following:

(15 marks)

- 1) Derive the time-independent Schrödinger equation in one dimension.
- 2) Consider the operators $\frac{d}{dr}$ and $\frac{d^2}{dr^2}$.

Are $\psi_1(x) = A \sin\left(\frac{n\pi x}{\lambda}\right)$ and $\psi_2(x) = e^{kx}$ eigenfunctions of these operators? If yes, what are

the eigen values? Note that A, n, λ , and k are constants.

- 3) For an electron moving on a ring:
 - a) Derive the solution for the Schrödinger equation.
 - b) Write down the expression for the energy. Is the energy quantized? What is the source of quantization (if any)?
 - c) What is the degeneracy of each energy level?

$$\nabla^2 = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial}{\partial r} \right) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial}{\partial \theta} \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2}{\partial \phi^2}$$

4) The bond length of the CO molecule is 1.2 Å. Calculate the separation between the rotational spectral lines in cm⁻¹.

C = 12.00, O = 15.9994, $H = 1.67343 \times 10^{-27} \text{ kg}$, $c = 2.99793 \times 10^8 \text{ ms}^{-1}$, $h = 6.626 \times 10^{-34} \text{ Js}$

Assiut University

Summer Semester Final Examination

Faculty of Science
Department of Chemistry

in
Inorganic Chemistry 2 (C-321)

Time: 3 Hours
September 2022

Answer the following Questions:

(25 Marks)

Question 1: Give the reason for the following:

- 1. Despite the 5d series consists of only ten elements, the atomic numbers of these elements vary from 57 for lanthanum (La) to 80 for mercury (Hg).
- 2. Unlike all metals, gold may exhibit the oxidation state (-1) in some compounds.
- 3. Zinc has the lowest melting point among the elements in the 3d series.
- 4. Co(II) gets easily oxidized to Co(III) when surrounded by strong field ligands.
- 5. The elements niobium ${}^{92}_{41}Nb$ and tantalum ${}^{181}_{73}Ta$ have the same size.
- 6. Cu(I) salts disproportionate in the aqueous media.
- 7. Iron has various ionic radii.

Question 2: Draw the crystal field orbital energy-level diagram and show the number of unpaired electrons in the complex anion $[Ni(CN)_4]^2$.

Answer FIVE Questions only from the following:

(25 Marks)

Question 3: Predict the maximum and minimum magnetic moment values for titanium in its compounds.

Question 4: Show the reason why transition elements tend to form alloys very readily and explain the main difference between the interstitial compounds and the alloys.

Question 5: Show the electron configuration and location of the element ₂₄X in the periodic table. Is this element likely to be an oxidizing or a reducing agent in aqueous media in its +2 oxidation state (why)?

Question 6: Show detailed procedures to balance the following equation.

$$MnO_4^- + Fe^{2+} \longrightarrow Mn^{2+} + Fe^{3+}$$
 (H⁺)

Question 7: Name the coordination compound $[(H_2O)_4Fe(\mu_2-OH)_2Fe(H_2O)_4](SO_4)_2$ and write the formula of sodium tetracyanonickelate(II).

Question 8: Define the terms "homoleptic and heteroleptic coordination compounds" and give an example for each.

Question 9: Describe, by an example for each, the fac- and mer-isomerism in the octahedral complexes.

Good Luck

Examiner: Ahmed B.M. Ibrahim

Associate professor of Inorganic Chemistry, Assiut University